RadioGraphics on postage stamps

Johannes Praestholm, M.D., Ph.D.
Inger Dissing, M.D.
Margrethe Herning, M.D.

Editor's note: Those who attended the 1986 Annual Meeting of the Society will recall the fascinating and extensive collection of postage stamps from around the world relating to the science of radiology that Dr. Praestholm and his colleagues displayed. We solicited photographs of the stamps, originally with the intention of printing them on blank left hand pages in RadioGraphics. That proved impractical, however, unless they were printed in black and white. This was considered at length, but color was judged to be such an important aspect of the exhibit that the original plan was ultimately abandoned. Could we print them on the occasional blank left hand page that occurred adjacent to an article in which colored illustrations appeared? Yes, this would have been economically feasible, but would have extended the project over many volumes and would have completely destroyed the coherence and informative organization of the original exhibit. Finally, after two years of indecision, we have determined to do the obvious and publish the material as we publish any other scientific exhibit, except that in view of the extent of the exhibit, we have opted to present it as a series of articles. So, here after unanticipated delay is the first article, beginning, as radiologic history properly should, with Roentgen himself. We hope you enjoy it.

Introduction

Postage stamps constitute an important medium of public information. Their messages often act through repeated, subliminal exposures, but at other times, depending on the size, layout, color and subject of the stamp, they may demand more conscious attention and inform more directly. Knowledge of radiology has been distributed world wide through the issuance of postage stamps illustrating various aspects of radiologic science ranging from theoretical radiation physics to clinical radiologic imaging and treatment.

Postage stamps with illustrations drawn from radiologic sciences, such as schematic atomic structures, x-ray tubes, radiographs and portraits of pioneers in the field are often issued in support of campaigns directed at combatting cancer, tuberculosis and other diseases. Countries honor their science and industry through postage stamps, often with motifs drawn from radiologic science. Scientific pioneers are commemorated, award winning scientists are honored for their achievements, and major radiological congresses are announced and supported—all through the medium of postage stamps.

For some years, the authors have collected postage stamps with radiological motifs. We have had the opportunity to exhibit portions of our collection at the International Congress of Radiology in Hawaii in 1985 and at the Annual Meeting of the RSNA in 1986. We are looking forward to exhibiting our collection, "Radiology on Postage Stamps" to a yet wider audience through the pages of RadioGraphics.
Wilhelm Conrad Roentgen

W.C. Roentgen was a German physicist (1845–1923). During experiments with a Crookes’ vacuum tube, he discovered an unknown radiation on 8 November, 1895. He named his discovery x rays and almost completely described their physical properties in a paper published in January 1896 (1). The abilities of x rays to penetrate solid bodies and to blacken photographic emulsions are fundamental to diagnostic radiology.

On the occasion of an anti-cancer campaign, W.C. Roentgen was first portrayed on a postage stamp, Danzig, 25 pf, 1939.

Roentgen’s portrait and a surcharge supported the raising of a cancer research fund in Surinam, 7½ c + 22½ c and 27½ c + 12½ c, 1950.

In 1901, Roentgen was the first recipient of the Nobel Prize in Physics. Sweden, 20, 40 and 15 ore, 1961.
Svante Arrhenius (shown here) was a member of the Nobel Committee in Physics. Roentgen’s correspondence with him throws an interesting light on Roentgen’s personality (2). Sweden, 15 ore (and 170 ore), 1959.

Roentgen was portrayed with an x-ray tube and the atomic symbol on the occasion of the First European Congress of Radiology, Barcelona. Spain, 150 ptas, 1967.

Roentgen was commemorated on the 50th anniversary of his Nobel Prize in the German Federal Republic, 30 pf, 1952.

On the 50th anniversary of his death, Roentgen was commemorated in Afars and Issas, 9 f, 1973.
Roentgen was portrayed on two Red Cross stamps in Togo, 45 f, 1969.

The 120th anniversary of Roentgen’s birth was commemorated by the German Democratic Republic, 10 pf, 1965.

Roentgen’s chief competitor for the first Nobel Prize in Physics was Ph. Lenard, a German physicist (1862–1947) (3). In 1893, Lenard reported on the properties of x rays without realizing their true nature. Ph. Lenard received the Nobel Prize in Physics in 1905. Sweden, 30 ore, 1985.

The Atoms and Their Radiations

About 400 BC, the Greek philosopher Democritos assumed that substances were composed of indivisible particles and named them atoms after the Greek word atomos: indivisible. Greece, 4.50 dr, 1961.

In 1896, the year after Roentgen's discovery of x rays, Henri Becquerel, a French physicist (1852–1908), discovered a spontaneous radiation from uranium (4). A stamp with Becquerel's portrait supported an anti-cancer campaign in France, 2 + 3 f, 1946.
Radiology on postage stamps


Marie and Pierre Curie together discovered two strongly radioactive elements, polonium and radium in 1898. Their portraits support many anti-cancer campaigns. Monaco, 65 + 25 c, 1938.

The Nobel Prize in Physics for 1903 was awarded to Becquerel for the "discovery of spontaneous radioactivity" and to Marie and Pierre Curie for "work on the radiation phenomena discovered by Becquerel" (5). Sweden, 50 ore, 1963.

The Nobel Prize is often mentioned in this series of famous scientists. Alfred Nobel was a Swedish chemist and inventor (1833–1896). He described a technique of controlled detonation of nitroglycerine. Before his death, he established the Nobel Foundation in 1895. Nobel's portrait and the reverse of the Nobel medal for physics and chemistry are shown on this stamp from Grenada, Grenadines, 1 c, 1978.

References